Stacking magnetic random access memory atop microprocessors: an architecture-level evaluation
نویسندگان
چکیده
Magnetic random access memory (MRAM) has been considered as a promising memory technology because of its attractive properties such as non-volatility, fast access, zero standby leakage and high density. Although integrating MRAM with complementary metal-oxide-semiconductor (CMOS) logic may incur extra manufacturing cost because of the hybrid magnetic-CMOS fabrication process, it is feasible and cost-effective to fabricate MRAM and CMOS logic separately and then integrate them using 3D stacking. In this work, we first studied the MRAM properties and built an MRAM cache model in terms of performance, energy and area. Using this model, we evaluated the impact of stacking MRAM caches atop microprocessor cores and compared MRAM against its static random access memory (SRAM) and dynamic random access memory (DRAM) counterparts. Our simulation result shows that MRAM stacking can provide competitive instruction-percycle (IPC) performance with a large reduction in power consumption.
منابع مشابه
A survey of memory architecture for 3D chip multi-processors
3D chip multi-processors (3D CMPs) combine the advantages of 3D integration and the parallelism of CMPs, which are emerging as active research topics in VLSI and multi-core computer architecture communities. One significant potentiality of 3D CMPs is to exploit the diversity of integration processes and high volume of vertical TSV bandwidth to mitigate the well-known “Memory Wall” problem. Mean...
متن کاملEnergy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کاملLow-Power Motion Estimation Processor with 3D Stacked Memory
Motion estimation (ME) is a key encoding component of almost all modern video coding standards. ME contributes significantly to video coding efficiency, but, it also consumes the most power of any component in a video encoder. In this paper, an ME processor with 3D stacked memory architecture is proposed to reduce memory and core power consumption. First, a memory die is designed and stacked wi...
متن کاملDESTINY: A Comprehensive Tool with 3D and Multi-Level Cell Memory Modeling Capability
To enable the design of large capacity memory structures, novel memory technologies such as non-volatile memory (NVM) and novel fabrication approaches, e.g., 3D stacking and multi-level cell (MLC) design have been explored. The existing modeling tools, however, cover only a few memory technologies, technology nodes and fabrication approaches. We present DESTINY, a tool for modeling 2D/3D memori...
متن کاملSome design rules to reduce power in microprocessors systems
In this paper, we present an evaluation of end user low power design techniques. They have been applied to a space-certified microprocessor system. The results demonstrate the efficacy of some straightforward low power design techniques. Some system-level design rules to save power even in a highly optimized microprocessor are obtained. Power reduction of 45%, 13% and 10% has been obtained by u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IET Computers & Digital Techniques
دوره 5 شماره
صفحات -
تاریخ انتشار 2011